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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

PTECHNICAL MEMORANDUM NO, 1045

THE HZAT TRANSFZR TO A PLATE IN FLOW AT HIGH SPEED

By E. FEckert and 0. Drewitz
SUMMARY

The heat transfer in the laminar boundary layer of

a hcated plate in flow at high speed can be obtained by
integration of the conventional differcntial cequations
of the boundary layer, so long as the material values
can be regarded as constant., This.premise is fairly well

atisficd at speeds up to about twice the sonic speed and
at not excessive temperaturc rise of the heated plate.
The genoeral solution of the equation includes Pohlhausen's
specific cases of heat transfer to a plate at low speeds
and of the plate thermometer., The solution shows that
the heat transfer coefficient at high speed must be com-
puted with the same equation as at low speed, when it is
referred to the difference of the wall temperature of the
heated plate in respect to its "natural temperature.t
Since this fact follows from the linear structure of the
differential equation describing the temperature field,
it is equally applicadble to the heat transfer in the
turbulent boundary layer.

INTRODUCTION

Phe development of skin radiators and the utilization
of hoat against icing,together with the necessity of seal-
ing the pressure cabins of stratosphere aircraft against
low outside temperature, have introduced inecrcasing in-
terest in hcat transfocr problcems. English tests, as well
ns thosc by Seibert (reference 1) have indicated that the
heat transfer to wing profiles can be quite accurately
predicted from that of the flow along a flat plate. Even
the hcat transfer to an airplane fuscelage can be simplified
to that along the flat plate. Our knowlesdge on heat trans-
fer past a plate extends, it is true, only to low airspeeds.

*“Dor Wirmellbergang an eiﬂé mit grosser Geschwindigkceit
linges angostr¥mte Platte. Forschung, vol. 11, no, 3, May-
June, 1940, pp. 1ll6-124.
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And the cited measurements on wing profiles themselves
were made only at airspeeds from 20 to 60 meters per sec-
ond. An application of the test data to speeds reached

by modern high-gpeed aircraft involves two difficulties.
First, the compressibility of air must be consgidered at
such speeds; second, the heat introduced in the boundary
layer by internal friction reaches values far from neg-
ligible. The effect of these phenomena on the heat trans-
fer to the flat plate will be analyzed in the present
report.

Heat trangfer in the laminar boundary layer.- Start-
ing with the heat transfer in the boundary layer to a
plate in longitudinal flow, the plate is regarded as
infinite perpendicular to the direction of flow. ZFixing,-
in this flow, a coordinate system with the x axis in
the vlane of the plate placed in stream direction and the
v @axis perpendicular to the plate, the differential equa-
tions of the boundary layer read:

o (pu) o(pv)
+

=0 (1)
0 x 3y
au &ﬂ a( &ﬂ
p(a 224 v 201 2 2 20 2
ox oy/ oy J dy/ (2)
d [, 3T\ /au.>2 /3T a7\
= A=+ ) = p& =+ v == 3
aY< oy/ T]\@y & °p dax | 3y (3)
where
u velocity component in x direction
v velocity component in y cdirection
T temperature
P air density
n vigscosity

thermal conductance
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Cp specific heat per unit welght at constant pressure
g gravitational‘ééceleration

The equations are expressed in the engineering system of
units, gz cancels out in the physical system, because in
the latter the specific heat 1s referred to unit mass.®
Qutside of the boundary layer the speed is to have the
constant magnitude wup; at the plate itself it is zero.
Prandtl!s hypothesis of small boundary layer thickness
which leads to the above differential equations, shows
that the pressure in the boundary layer of the flat plate
and hence in the entire field of flow is constant. The
material guantities, therefore, depend only on the temper-
ature, that is, for air the density varies, according to
the gas equation, inversely proportional to the absolute
temperature, the viscosity and the thermal conductance
about proportional to the 0.75 power of the absolute tem-
perature, while the specific heat remains practically un~
changed., The greatest temperature differences that can
occur as a result of the interanl friction in air (and in
any substance where Prandtl aumber is less than unity), are
of the order of the adiabatic temperature rise uoz/ag;cp.

At sonic speed expressed with ag =g (K~-1) cp T, the

. . ag® K -1
adiabatic temperature rise is AT =

i

= T and

hence the relative variaction of density in the boundary

. Ap AT K-l
layer due to the temperature accumulation —=-—=5——

for air with an adiabatic exponent K= 1.4, is therefore,

AR = 320 percent. At airspeeds up to velocity of sound

P

the mcterial values therefore do not vafy very much, hence
may be regarded as constant, provided that the impressed
temperature diffsrence of the plate relative to mas in
undisturbed flow ig anot excessive. Busemann and “.n Karnan**
have solved the friction and temperature conditions in the
laminar boundary layer of a plate for the zspecific case of
flowing gas having the Prandtl numdber Pr = 1, where the
variation of the material values is considered. The calcu--
lations indicate in agreement with the previous estimation

*In ecquation (3) and those following, the mechanical equiva-
lent of heat A is omitted, since it is superfluocus by
dimensionless presentation of the formulas; it merely requires
nat the equation 1 kcal = 427 mkg is applicable.

**See references 2 and 3.
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that the effect of the variable material values does not
becowse perceptible except at great Mach numbers (greater
than 2). Limited to Mach numbers smaller or only a little
greater than unity, the differential eouatlons(ﬂ to(? read

o N ov 0 (11)
ox dy
d du d%u
5t ey T Uae (2t
b'd
v y
34 3 3%+ au\B
£ cy, plu R Sl B i <= (3')
2 x oy dy = Oy /
vvhere
v o= n/p kinematic viscosity
3 . signifies tixe temwerature increase relative to
the value in undisturbed air stream
/ o WV
On introducing the stream function W&F = Sy v o= = S_
¥ X

equation (1') is fulfilled., ZEquation (2!') reduces, accord—
i

; . . . u
ing vo Blasius (reference 4) with the variables ¢ = % y 33
e
ant  { = —————, to the conventional differential equation
V Uy X /
— —— = 0 4
-] 5 )
at ~ dEe
Tor +vhich the limiting conditions ares: u§=o=0 and
. Uop 1L§ P . N
Up _Fu Since, u = =5 —— according to the adove
f=c Yo" 2 qt > J
/aﬁ\ ’dL

:__ and 2., This solution vas given
)i—o \\CLE)E’ =

bf 3lasius,
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Introducing the new variables and inserting the Prandtl
number ‘Pr = m Gy g/k, equation (3') transforms, according
to Pohlhausen (reference 5),%t0

a%s d e 2 lazt\
S aprg i JER e (8215 oy (5)
at at 2 2gey at

This is a linear inhomageneous differential eguation for
solving the increase of temperature 4. In i% is a
function of € known through the solution of equation (4),
the other guantities are constant. By introducing a new
unknown for dé/dﬁ it can be reduced to a differential

equation of the tirst order.
TFe sclution of the related homogeneous differential
eguation -

dﬂl ds
g + Pr - = 0 (6)

shows after integration
. .
: -pr J tat at
s (&) = Cy + cgf e . o (7)

o]

Physically, the postins of the disturdbing term f (&) equal
to werc in eqguation (5) signifies that the heat introduced
by iuaternal friction is neglected in the solution of the
temoserature field., This is admissible at low speeds, be—
cauce the speed ug, enters squared in f (ﬁ).

On tlhese premises temperature differences in the flow
are formed only when the plate is heated and dissipates hecat
on the gas and conversely vvithdraws heat from the gas by
cooling., With. T, signifying ihe plate temperature and
Ty the gas temperature in undi{turbed flow, the limiting
conditions 1,¢., to which the solution of the differential
equation must pe fitted, read:

lic.l. 8, (0) = T, — Tos lic.2. #, (=) =0

&

’
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The constants C; and Cz; are obtained from the
general solution (7) by entering the limiting conditions.
Thus

£ ¢

v v -pr J at
(T, - Ty) Ll - a / e ° dﬁ}

o]

3, (8) (8)

~ 4
in which 2 = / e Pré ga t df - that is, a function of
a
o

the Prandtl number.

This solution is identical with that given in a
slightly different form by Pohlhausen (reference 5).

Bquation (8) is evaluated in figure 8; it indicates
the temperature field for different Pr at small flow

velocitiess At the wall, u = 0 and v = 0; hence
3~ .
aygl = 0, according to equation (3'). The curves begin

with infinitely small survature at E= 0; they then de-
flect quite sharply in the horizontal asymptote. The
field of velocity itself is readily apparent. Substitut-
?
ing the unknown ! = 2(1 - —
Ty

> for %1 in equa-~
To

tion (/) does not alter the form of the equation, but the
limiting conditions for ! read: $!'(0) = 0 and

s'(») = 2, Then the same differential equation (4) or (8)
and the same limiting eonditions are applicable to db/d

and #!' at Pr = 1, Both functions of ¢ must therefore
d ]

be identical: —E = &, Tt follows that 1 = et _ = JL.
at Ty = To Yo

The lines in figure 1 for Pr = 1 therefore indicate, at

the same time, the velocity profile for all Pr,. The
thickness ratio of the frictional boundary layer to the
thermal boundary laycr is therefore also immediately
obtainable from the graph., For an oil with a Pr = 1000,
for instance, the line Pr = 1000 indicates the extent of
the thermic boundary layer; the line Pr = 1, the extent
of the frictional boundary layer. The latter extends for
this oil ten times as far into the fluid as the former,

The amount of heat given off by the plate per unit
arca per unit time at point x 1is
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2 ke (‘“1_
ay/y:o 2 DJ.C d'g E:O

A
2 /=2 a (7y - Ty) = alTy - Tp)
2 vx

where o 1is the coefficient of heat transfer. Then the
Nusselt number is-

(o]
i
]
>
77N
(o7}
£
(=1
%
1

]

Ug
v

= 2 /Re (9)

T a
=
I~
I
>19
54
n

a
2

Re 1is the Reynolds. number formed with the distance from
the plate front edge. According to Pohlhaugen (reference

S

3

5) a = 0.664 ./Pr is a good approximation, which holds up
to Pr = 1000 according to Ten Bosch (reference 6), The
formula for the heat transfer coefficient herewith becomes

P etnnd

3 4
| ¥u = 0.332 J/Re ~/Pr (10)

Integration with respect to the plate length affogds
the total heat removal from start of plate to point x

X
Q:[ g dx =A
v
[o)

‘ and the Nusselt number formed with the mean heat transfer
| coafficient from beginning of plate to point X

a (Ty - To)

o) X 3

Nu, = = a «/Re = 0.664 /Re V/Pr (11)

e — -

The heat transfer in the laminar boundary layer at
high speed.~ The general solution of the inhomogeneous
differential equation (5) is obtained with the solution
(equation (7)) of the homogeneous equation by '"varilation
of the constants.”"” It reads:

v—r




8 NACA Technical Memorandum ¥o. 1045

¢ £
a(g)=01t+c2'f e"Pr£ Cdgd& ]

52 o __fir Prf geEf(Z > Prf Cat E:'dﬁ (12)

The temperature field at heat transfer to the plate
with grest flow velocities follows by appropriate choice
of limiting conditions, Given the wall temperature T,

an® the temaperature in undisturbed flow T,, they read:

l.c.l 2(0) =T, - T, l.c.2 8(®) =0

The related solution reads:

£t _pr ./EJ gdg}

s(E) = (T, - T,) Ll - aL/ e

o]
u,® ¢ _pr f% Lat
+ E—é—gg (a bJ[ e at
E = E 2 fE , .

Pr —-Prf fat r a®tN Pr J Cat
_ _2_[ :. J ;.F e ag} d&> (13)
where .ﬁ ¢

_ Pr - ~PrJ lat /faeé pr.f[, tat ]
b o= ~2—j K dﬁz e at | at

0

The heat rewoval of the plate at point =x per unit
surface 1is

. ‘G\
q = = )\<2—) =
ay :’r= o}

N o T 3 ]
RNYACINING S N U (14)
Tes Vx| 2 £ cp

/ii

1

>
le

e

2 I

1



NACA Technical ‘Memorandum No. 1045 9

Equations (13) and (14) can be transformed if the gas
temperature in undisturbed. flow 1s replaced by the temper-
ature that the unheated wall assumes 1n the gas stream,
This is henceforth termed Ynatural temperature" T,.
Since, in this instance, the wall neither absorbs nor dif-
fuses heat, the temperature field is

(ér:;z)ym =0 G;Ea) g=0 = ©

Performing this operation with equation (13) gives the
temperature field at the unheated wall

: ¢
o) = ’zi;'ic—p <b - %—1: 5 [;Prjtdj¢ (Efg_ zePchdg dE]dE) (15)

ag @

where again*

&“ b' _ %im [e—Prjﬁ dgj» <d2§>z ePro}é dEdg] ag - | g’?l
(o} S0

at 2 ’

The increase of temperature assumed by the wall follows
from (15) for tE =0

b, = #5(0) =

b (16)

With it the natural temperature of the wall itself is

L2
known; T _ = T, + #,. The quantity =

e u,2/2 g cp

can be

read from figure 2.

In the range of Prandtl numbers (Pr = 0,5 to 2),
S

involved for gases); L =«7Pr is a very good ap-
u,2/2 g cp :

proximate. From figure 3, wherein the adiabatic tempera-

n_<
ture rise E——E—— is shown plotted against the speed u
& Cp

o

*This equation also agrees with the solution given by
Pohlhausen for the plate thermometer.
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the value itself can be formed without further calcula-
tion, Several experiments with air were made for pre-
dicting the natural temperature T,. The recorded values
are in good agrecement with those to be marked off in fig-
ure 2, Figure 4 shows the temperature field in the bound-
ary layer at an unheated wall for different Prandtl num-
bers, Since the temperature rise at the wall, according
to figure 2, becomes so much greater for a given speed as
the Prandtl number is greater, hence reaches especially
great values for oils (in the lubricating film, for in-
stance) (a case in point being that treated by G. Vogel-
pohl, in 01 u. Xohle, vol. 14, 1938, p. 996), equation
(15) was evaluated up to Pr = 1000.

Subsequent to the introduction of T, in equation
(13) conformably to equation (16), the temperature field
of the heated plate can be written in the form

¢ -PrE d
3(E) = (Ty = Tg) I-l - af Je E]

+ ??i <b - L [ _Prc/'g ag f(a% 2 Pro[g at dE]dE)(l’?)
- 2,

The first summand represents the temperature field ﬁl(E)
resulting at an increase of plate.- temperature T, - T,

in the absence of frictional heat; the second summand in=-
dicates the temperature rise s5(f) due to heat of friction,
The temperature field therefore represents the superposi-
tion of the two separate filelds, as is evident from the
linear construction of equation 3. In figure 5 the temper~
ature fields generated in this manner are shown for a
Prandtl number of Pr = 0.7. Air, according to the most
recent measurements (reference 7) has a Prandtl number of
Pr = 0,715; the temperature ficlds reproduced in figure b
are therefore sufficiently exact for this gas. The ordi=-
nate scale at the right, from which the increases of tem-
perature for an airspeed of 200 meters per second can be
read direct, affords a concept of the occurring speeds.

The bracketed numerical values give the temperature differ-
ences T, - T, for the same airspeed. The heat given off

by the plate is equal to zero according to (14) and (16)

for the line with the parameter EEEL—EQ = 1, for the two
Ty - T e -

temperature fields —E_b © = 2 and Eﬁ___zﬂ = 0, equally

e &
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great with the difference that in the second case the
heat flow is directed toward the plate.

e s

2y

With the introduction of 1T, the transfer of heat

q from the wall to the gas (equation (14)) assumes the
form

ALY -
= e f— a (T, ~ T 18
q oW vy ( w e) ( )

and the nondimensional local heat transfer coefficlent
when referred, according to

a g = ofTy - Tg) (19)
to the difference between wall and natural temperature,
follows at

o X a 3
Nu = —— = Eﬁ/Re = 0.332,/Re ,/Pr (20)

..

The Nusselt number formed with the mean heat transfer from
beginning of plate to point x 1is
T am X 3
i . Nu, = = o/ Re = 0.664 /Re ./Pr (21)
A

The heat transfer factors defined according to equation
(12) therefore follow the same relations as at small flow
velocities, The natural temperature required for calculat-
ing the heat flow g can be taken from figure 2.

Also of interest in many instancs is the amount of
heat produced by internal friction. The frictional heat
developed per unit volume is given by the term

au 2 . .
v P <€§> of squation (3!'). From it follows the heat

generated at point x in the total boundary layer dy in-
tegration with respect to y at

(o=} - [o-] 2
o [ @Y -2t /R Q) e e

Bvaluated, the integral jp<:££ ;dg yields 2.018. Now it
d
)

-




12 NACA Technical Memorandum No, 1045

is a simnle matter to predict the temperature the wall
must have in order that the total frictional heat flows
onto the plate. It merely remains that equations (18)
and (22) be equated. The resultant temperature field is
shown as curve a in figure 5,

Recheck of the derived formulas for Pr = 1,
Busemann and Von Karman had computed, for a gas with a
Prandtl number Pr = 1, the velocity profile with allow—
ance for the variation of the material values, Now the
reliability of the earlier assumption of constant material
values for the calculation of the heat transfer is %o be
checked with the rsults of the present study. Between the
velocity u in the boundary layer of a gas with a
Prandtl number Pr = 1 and the absolute temperature T
at the same point, there exists the relation (reference 2)

‘5 2 2
1 u u u
T:Tw—’.TW—TO——JO ]————-—-0—-—<—> (23)
L 2 g ¢ u 2 g Cp \lp

(Tw, plate temperaturey T, , u,, temperature and speed in
undisturbed gas flow outside the boundary layer). The
unheated plate 1s characterized by the fact that the tem—
perature gradient at the wall is equal to zero: OT/dy = O,
But, since the value of Jdu/dy at the wall is certainly
different from zero and the speed at the wall is zero, it
implies that the bracketed term in equation (23) must be—
come zeros The plate temperature in this instance— that

is, the natural temperature — isztherefore
u
0
Te=To+——
2 g cP

in agreement with equation (16), where b assumes the value
1l for Pr = 1, according to figure 2., The temperature T,
in the boundary layer of the unheated plate follows from

equation (23)¢
g Cp <~—>

The equation.can also be written in the form

e

- uoz
¢, T + — = ¢ T _  +
P "2 2 p "o 2 g
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where it expresses the well-known fact that for a gas
with Pr = 1 in the boundary layer the sum of enthalpy
and motion energy has the same value at every point of
the unheated plate, ‘This applies also, as is known, to
the turbulent bounary layer (reference 8),

The ratio of increase of femperature in the bound-—
ary layer to that at the wall 1is

EY Ta — To u 2
= - 1 — —
e — Tyo Uo

[

*
H

The temperature field for Pr = 1, reproduced in figure
4, ecan therefore be derived in simple manner from the
velocity profile (fig. 1),

After insertion of T, 4in equation (23) the temper—
aturc field of the heated plate assumes the form

T = - (T, — Tg) — — A <-;> (23a)
0

2 g c

The tenperature gradient at the wall follows at

(8., = =0 & (5,

because, since the speed at the wall is zero, the second

term in the above eguation disappears. Reference of the

heat transfer factor again to the difference between wall
temperature and natural temperature affords

° (11 )
=\ AT Yo
- - w_a> =“Xw[“a :L (24)
Ty — Ty Y/y=o ¥ =0

A andé subsequently n,v, and cp are given the sub—
script w, since their values are to be entered for the
wall tcemperature. Figure 6 shows the velocity profiles
at the unhcatcd plate for three Mach numbers plotted
against the nondimensional distance from the plate

y as
E = 3w O“ according to the calculations by Von Karman
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and Tsicn (reference 3)., It is readily apparent that the
discrepancics between the velocity profiles are small,
especially abt Mach numbers up to M = 2., The velocity
gradient at the wall is only about 3 percent greater at

M =2 than at. ¥ = 0, ZEven at M = 10 the difference
is no more than 20 percent. To the extent that the tem-
perature differences (Tw — Te) do not become excessive
at the heated plate, the velocity profiles do not vary
perceptiblyy hence the heat transfer factor which pre—
viously has been computed at all speeds with the velocity
profile for I = 0 differs, at the most, by 3 percent
from the true value of a gas at Pr = 1, At other Pr
not too far from unity the error is of the same order of
magnitude.,

The foregoing arguments further indicate the temper—
ature at which the material values should be entered in
the heat transfer equations. Eguation (24) already implied
by subscript w that the thermal conductance must be
introduced at the wall temperature. Even the differences
in the velocity profiles at different M are much smaller,
if, as in figure 6, the plate distance with the kinematic
VlSCOS¢ty at the wall the temperature is made nondimensional..

In figure 3 of the Von Karman — Tsien report (reference 3)
the velocity profiles are plotted against
/ Yo
= yﬂ/; = (vy, kincmatic viscosity at temperature in

0
undisturbed gas flow). The discrepancies between the
individual profiles are substantially greater.,

Reynolds! formula for the ratio of heat flow Q =
~kw(6 T/3y) y=o Onto the plate to its towing resistance

W o= W(&u/by)y o
9_, =ch(TO - Tw)
W w

o]

holds true at low speeds and for a material with the
Prandtl anumber Pr = 1. At higher Mach numbers the ratio

% follows from the foregoing at )

9 _ Ap(To — Tw>

W Ny Yo

or, with consideration to Pr = g cp'n/l =
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at Q - & cPW(Te._ TW)
w . u,

Reynolds! formula therefore is equally applicable in gas
dynamics when the natural wall temperature Te ig sub-

stituted in place of the gas temperature T,. It applies
to laminar as to turbulent boundary layer. :

Turbulent boundary layer.- From the technical point
of view the heat transfer in the turdbulent boundayer layer
is of much greater importance than in the laminar, since
the latter changes to turbulent, even by completely undis-
turbed inflow, if the Reynolds number formed with the
distance from the start of the plate reaches 500,000. Thig
occurs a few centimeters from the plate at high speeds. An
exact theoretical treatment of the flow and temperature
conditions is in this instance not possible and feasible
only under certain assumptions concerning the turbulent in-
terchange. However, it can be stated that the linear super-
position of the of the temperature fields, as it occurs in
the laminar boundary layer, remains also in the turbulent
s0 long as the material values inclusive of the density can
be regarded as constant, which, as previously shown, is the
case for the flat plate up to Mach numbers M = 2. Thig is
manifested by the general differential equation for the
heat flow in a mass particle

' 2
g P cp g_'%_ = AA 8 + m (diss. fct. ('!Y_)) (25)

(D/dt = substantial differential guotient with respect to
time, diss. fct. (w) = dissipation function for the veloc-
ity vector w). TFor, even this eguation (25) is already
linear in = exactly as equation (31'), which results from
the.foregoing for steady flow with the possible omissgions

in the thin bourdary layer. The field of flow is completely
independent of the temperature field under the assumption

P = constant, and therefore algo the heat developed by
internal friction: (m diss. fct. (w)) a guantity defined
by the velocity field.

The temperature field without these sources of heat
is known from measurements at low speeds. The theory of
similitude affords the aspect of the temperature field at
high gspeeds but in absence of internal friction; namely,
precisely as in a slow flow with the same value of Re and
Pr, leaving for measurement then merely .the temperature
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field formed at high airspeeas by internal friection at an
- unheated plate. And with it the field for heat transfer
at high gpeed is obtained by superposition.

But from the linear superposition of the temperature
fields, it further follows that in laminar as in turbulent
boundary layer, the characteristic relation

Nu = £ (Re, Pr) (26)

established for the heat transfer at low speeds, must be
equally applicable at high gpeeds, if the heat transfer
factor is referred to the difference between the wall tem-
perature and the natural temperature. Inasmuch as the

heat transfer at low speeds is now fairly well established
(reference 6) the knowledge of the "natural temperature"

of the plate is sufficient for calculating the heat trans-
fer at high speeds. According to calculations by Schirokow
(reference 8) the natural temperature at the plate can be
indicated. But it would be desirable to check thesge values
by experiments.

Heat transfer on profiles.- If the body concerned is
a profile with considerable thickness rather than a thin
plate, the flow outside of the boundary layer is also
affected by it. A velocity field and a pressure field is
formed about the body. 1In this event the eguation (2) of
the boundary layer must be enlarged by the pressure gradient -
apﬁax on the right-hand side. Then the material values
(density, viscosity,and the thermal conductance) vary on a
surface nmormal within the boundary layer solely as a result
of their temperature relationsghip. When this, as on the
plate, is neglected for not too great Mach numbers, the
boundary layer equations assume the form -

E§B+§E+BZ=0 (1m)

p 3x dx dy

2

u..a.E.-}- v..a_ll.:: v_a.._.l_l_- %

ox oy ay

T

(2m)

as 2% "
9.3 +'n< > g cpP udl + V& (3%)

where x denotes the coordinate along the surface of the
body, y that mlong the surface normal, + the increase
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of temperature over the value in the potential flow at the
boundary-of the -boundany.layer. The density gradient
3p/3x and the pressure gradient .0p/dx, as well as the
density P, the thermal conductance » &and the viscosity
N, are given as functions of x by the flow outside of
the bouundary layer. As a result, the velocity profile can
be computed again simply from equations (1%) and (2") and
because of the linearity of equation (3"), the linear
superposition of the temperature fields is applicable as
on the plate. Thig '‘implies that the local hest-transfer
factor is independent of the temperature difference.
Admittedly, the range of validity of the heat transfer
formulas secured by tests at low velocities is smaller
than at the plate even if the heat transfer factor is re-
ferred to the difference: wall temperature and natural
temperature, since on approaching sonic velocity the field
of flow outside of the boundary layer is slightly deformed
owing to the variable density. On exceeding the sonic
velocity 1t varies rather congiderably due to the occur-
rence of compression shocks. With the knowledge of the
external field of flow, the equations (1") to (3"), on the
other hand, can be integrated and so the velocity and tem-
perature field in the boundary layer solved. The solution
for the flow in the neighborhoocd of a stagnation point is
to be revorted shortly.

For the cited reasons the application of the heat
transfer factors on the flat plate to the heat exchange
on airplane wings and fuselages, as is customary at low
velocities, requires a certain caution. But, if the areas
with especially great pressure differences {(nose of wing)
are excluded from the analysis, an approximate solution is
certainly possible by means of the data for the flat plate.
In conclusion, an egstimate is given of the effect of the
internal friction on the heat trangfer at the initially
mentioned applications in airplane design. On a water
radiator mounted in the wing of an airplane and swept in
flight with an air velocity of 200 meters per second, the
temperature difference of the surface wetted by the water
relative to air in flight in ground proximity, emounts to
about 65°, the difference between natural temperature and
air temperature, according to figures 2 and 3, to 172 ¢
in the leminar boundary layer and between 17° and 18° ¢ in
the turbulent. The controlling difference for the heat
transfer between wall temperature and natural temperature
ig therefore 47° to 48°; whereas without internal friction
the total increase of 65° would be free for the heat trans-
fer which would be, therefore, around 40 percent greater.
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With glycol cooljng the effect is about half as great,
since corresponding to the higher temperature of glycol
the increase of temperature of the wetted surface is about
twice as great as with the water radiator. In the cabin
of a stratosphere airplane without ventilation and w1thout
heating a temperature would result that is equal to the
natural temperature of the surface of the airplane fuse-
lage, hence at a flying speed of 200 meters per second is
from 17° to 18° higher than the outside air temperature.
The latter is -56.5% at flying heights above 11 kilometers.
If the air temperature in the cabin is to be kept at +15° C
by additional heating, it need only correspond to a 17° to
189 gmaller temperature difference. The conditions are
therefore similar to those obtaining on a wing radiator
with water cooling, and at 200 meters per second flying
speed the heat transmission through the insulation is re-
duced by about 40 percent as a result of the air friction.
As the flying speed increases the effect of the internal
friction increases very materially. From 380 meters per
second airgspeed on the water,radiator ceases to give off
heat at sea level, and insulation of the cabin of the
stratosphere aircraft is no longer necessary. In lower
flying levels provisions would already have to be made for
cabin cooling.

Tranglation by J. Vanier,
National Advisory Commlttee
for Aeronautics.
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Figure 4.- Temperature field &)2 of an unheated plate in flow at high
speed at different Pr in laminar boundary layer.
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